2020年4月13日星期一

Why Refer High Voltage Batteries?

Drones are being used more and more widely in all our lives, so the batteries that power these devices are increasingly advancing and being pushed to their limits. One of the biggest challenges to these batteries is endurance; more and more users need the power to last longer.

One such example is with an agricultural drone. Let’s say that the drone carries 10kg of pesticide with two ordinary Lithium Polymer (LiPo) batteries that have a capacity of 16000mAh in 6S (22.2V). This drone will only be able to last about ten minutes with these batteries, which farmers generally find to be too short. However, the use of high-voltage batteries with the same capacity and C rating can increase this flight time by 15-25%, which will increase the efficiency and operations.

We will explore why high-voltage batteries can improve flight duration and also look at the advantages of such batteries.

Tattu high voltage drone battery

1. Weight
Without an increase in weight, high-voltage batteries provide better performance.  This is key for UAVs since each drone has a specific payload that it cannot go over.

2. Higher Voltage

If we compare ordinary LiPo batteries to that of those with high voltage, we see a subtle change in voltage. Through this little voltage increase, users are able to get increased performance in their products.

Ordinary LiPo Batteries

The nominal voltage for a single LiPo cell is 3.7V. A 6S battery pack has a nominal voltage of 22.2V, and a 12S has 44.4V.
A single LiPo cell that is fully charged has 4.2V while a 6S has 25.2V and a 12S 50.4V.

High-Voltage LiPo Batteries

The nominal voltage of a single high-voltage LiPo cell is 3.8V, a 6S pack has 22.8V, and a 12S has 45.6V.
A single LiPo cell that is fully charged has 4.35V while a 6S has 26.1V and a 12S 52.2V.

3. Better Cycle Life

Battery cycle life
In the chart above, we can follow the discharge rate of several batteries. The high-voltage 4.4V batteries (shown in green) demonstrate a higher discharge rate and discharge capacity.
Grepow HV battery discharge curve
The above chart shows that, under the same discharge currents and cycles, the 4.4V (in blue) has a longer cycle life than the other batteries at 4.35V or 4.2V.

4. Increased Efficiency

Similar to the example offered at the beginning, we put two drones together for a simple test.  Both drones carried 15kg of water with two batteries of 25C and 22000mAh in 6S.
The drone with the non-high-voltage batteries (22.2V) lasted 17 minutes and 50 seconds.
The drone with the high-voltage batteries (22.8V) lasted longer for 22 minutes and 10 seconds, lasting 4 minutes longer than the ordinary batteries.

Conclusion

According to the above data, the advantages of high-voltage UAV batteries are obvious.
Grepow products high-quality and high-voltage batteries under its different brands, GensAce and Tattu.  We are able to custom, high-voltage cells and offer a one-stop service for your battery designs and solutions.
More details can be found at our website at www.grepow.com or https://www.grepow.com/page/lipo-battery.html.  We can be reached at info@grepow.com for more information.

2020年4月6日星期一

Standard and Smart Lithium Polymer Batteries

Unmanned and self-operating vehicles (often known as UAVs, UGVs, AUVs, USVs, etc.) are powered with batteries. Larger, driverless vehicles, in particular, can be powered by an ICE (Internal Combustion Engine) that is typically paired with a Lead-Acid battery. Drones, on the other hand, usually use a Lithium-ion Polymer (LiPo) battery.
In this article, we will explore the basics of standard and smart LiPo batteries.

Standard LiPo Batteries

LiPo batteries are generally made with battery stacking technology, which allows for a high equilibrium of contact between the anode and cathode.  The nominal voltage of each standard battery cell is 3.7V while the fully-charged voltage is 4.2V.  High voltage batteries offer a greater and higher volumetric energy density by increasing the nominal voltage up from 3.7V to a range of 3.8 to 3.9V per cell.

uav battery

LiPo batteries are a popular choice for unmanned systems for a variety of reasons.  One reason is that the cells are packaged in thin, flexible aluminum sheets, which allows the final product to be light in weight.  Lithium Polymer batteries particularly can be customized in accordance with the capacity, shape, and size of a user’s electronic device.
With the demand for larger drones that can carry higher payloads, hard-shelled batteries have emerged.  These Hardcase batteries are particularly helpful due to their BMS (Battery Management System) and exterior protections. Grepow’s Tattu 12S, 44.4V batteries’ IP, in particular, is rated at 53 and the other Hardcase products at 50.
drone battery capacity

Smart LiPo Batteries with BMS

bms tattu drone battery
Grepow’s smart Tattu batteries carry a BMS that is able to detect their status in real-time.  The status is shown with a red or white indicator light that will warn a user of over-voltage, overcurrent, over-heating, etc.
Some examples of the light in use are as follows:  The battery is placed in sleep mode when not in use; this is indicated when the light turns off.  If the battery discharges and there is a low voltage (less than 3.3V per cell) or a cell voltage difference of more than 50mV, the light will start to flash.  There is also a smart storage function, where the battery will automatically discharge to the recommended storage voltage to ensure the longevity and safety of the battery.